Adding 3D-Structural Context to Protein-Protein Interaction Data from High-Throughput Experiments
نویسندگان
چکیده
Abstract In the past decade, automatisation has led to an immense increase of data in biology. Next generation sequencing techniques will produce a vast amount of sequences across all species in the coming years. In many cases, identifying the function and biological role of a protein from its sequence can be a complicated and time-intensive task. The identification of a protein’s interaction partners is a tremendous help for understanding the biological context in which it is involved. In order to fully characterise a protein-protein interaction (PPIs), it is necessary to know the three-dimensional structure of the interacting partners. Despite optimisation efforts from projects such as the Protein Structure Initiative, determining the structure of a protein through crystallography remains a timeand cost-intensive procedure. The primary aim of the research described in this dissertation was to produce a World Wide Web resource that facilitates visual exploration and validation (or questioning) of data derived from functional genomics experiments, by building upon existing structural information about direct physical PPIs. Secondary aims were (i) to demonstrate the utility of the new resource, and (ii) its application in biological research. We created a database that emphasises specifically the intersection between the PPIs-results emerging from the structural biology and functional genomics communities. The BISC database holds BInary SubComplexes and Modellable Interactions in current functional genomics databases (BISC-MI). It is publicly available at http://bisc.cse.ucsc.edu.
منابع مشابه
High-Throughput 3D Structural Homology Detection via NMR Resonance Assignment
One goal of the structural genomics initiative is the identification of new protein folds. Sequence-based structural homology prediction methods are an important means for prioritizing unknown proteins for structure determination. However, an important challenge remains: two highly dissimilar sequences can have similar folds — how can we detect this rapidly, in the context of structural genomic...
متن کاملMapping of TP53 protein network using cytoscape software
TP53 acts as a tumor suppressor in cancer. It induces cell cycle arrest or apoptosis in response to cellular stress and damage. p53 gene alteration could cause uncontrolled cell proliferation.In the present study, we used TP53 gene as the seed in the construction of a protein-protein functional association network to identify genes that might involve in tumorgenesis process with TP53. TP53 prot...
متن کامل3D Structural Homology Detection via Unassigned Residual Dipolar Couplings
Recognition of a protein's fold provides valuable information about its function. While many sequence-based homology prediction methods exist, an important challenge remains: two highly dissimilar sequences can have similar folds-- how can we detect this rapidly, in the context of structural genomics? High-throughput NMR experiments, coupled with novel algorithms for data analysis, can address ...
متن کاملBuilding an automated classification of DNA-binding protein domains
Intensive growth in 3D structure data on DNA-protein complexes as reflected in the Protein Data Bank (PDB) demands new approaches to the annotation and characterization of these data and will lead to a new understanding of critical biological processes involving these data. These data and those from other protein structure classifications will become increasingly important for the modeling of c...
متن کاملHigh-Throughput 3D Homology Detection via NMR Resonance Assignment
One goal of the structural genomics initiative is the identification of new protein folds. Sequencebased structural homology prediction methods are an important means for prioritizing unknown proteins for structure determination. However, an important challenge remains: two highly dissimilar sequences can have similar folds — how can we detect this rapidly, in the context of structural genomics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011